2024/08/07

Digital Circuits

Complement System

7 1 5 - 897 × not allowed

(-500) to (+499)

MSB

$$315 - 497 + 2 - 2$$

$$= 315 + (2 - 497) - 2$$

Choose $\rightarrow 2 = 1000$
 $(2 - number) > 500$

$$= 315 + 503 - 1000$$

$$= 818 - 1000$$

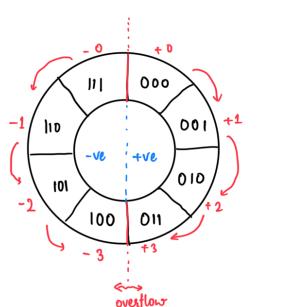
$$= -(1000 - 818)$$

$$= -(1000 - 818)$$
system
$$= -182$$

You need not perform this Subtraction if you choose & ~> max count + 1

$$= 600 \quad \text{overflow}$$

Binory	Decimal	
000	0	
100	1	
010	2	+ve numbers are represented
011	3	The managers was supposed.


100
$$-4$$
 -ve numbers $\rightarrow -d = 2^n - d$
101 -3 number of bits

111 -1

n-bits in 2's complement representation: -2^{n-1} to $2^{n-1}-1$

1's complement system:-

\longrightarrow	\sim					
Binary	Decimal					
000	o					
100	1	\rightarrow	Pocitiva		$d \rightarrow d$ $(-d)_2 = 2^n - 1 - d$	
010	2					
011	3					
100	-3		Neguwe	TWINGE	(-11), 2 -1 -11	
101	-1					
110	_1					
(11	0					
	I	1	Overflow			

{1,0, ...} Boolean Algebra

Operators

Switching Algebra

Memory

Device operates

on past data

(or future samples)

Next lecture:- Axioms of Boolean Algebra

Ooubts in Assignment pls

2024/08/08

* Axioms

- if B≠1, $\beta = 0$ (i)
- [Binary] if B≠0 B = 1
- $\overline{1} = 0$, $\overline{0} = 1$ [Complement] (ü) NOT operator
- = 0 , 1 + 1 = 1[AND/OR operator] (iii) 0.0
- = 0, 0 + 1 = 1(W)
- 1.1 = 1 , 0 + 0 = 0(V)

Theorems

- [Dentity] $A \cdot 1 = A$, A + O = A(i)
- $A \cdot O = O$, A + 1 = 1[Null element] (ii)
- [Idempotency] $A \cdot A = A$, A + A = A(iii)
- $\bar{\bar{A}} = A$ [Involution] (iv)
- [Complement] $A \cdot \overline{A} = 0$, $A + \overline{A} = 1$ (v)
- [Commutation] $A \cdot B = B \cdot A$ (vi)

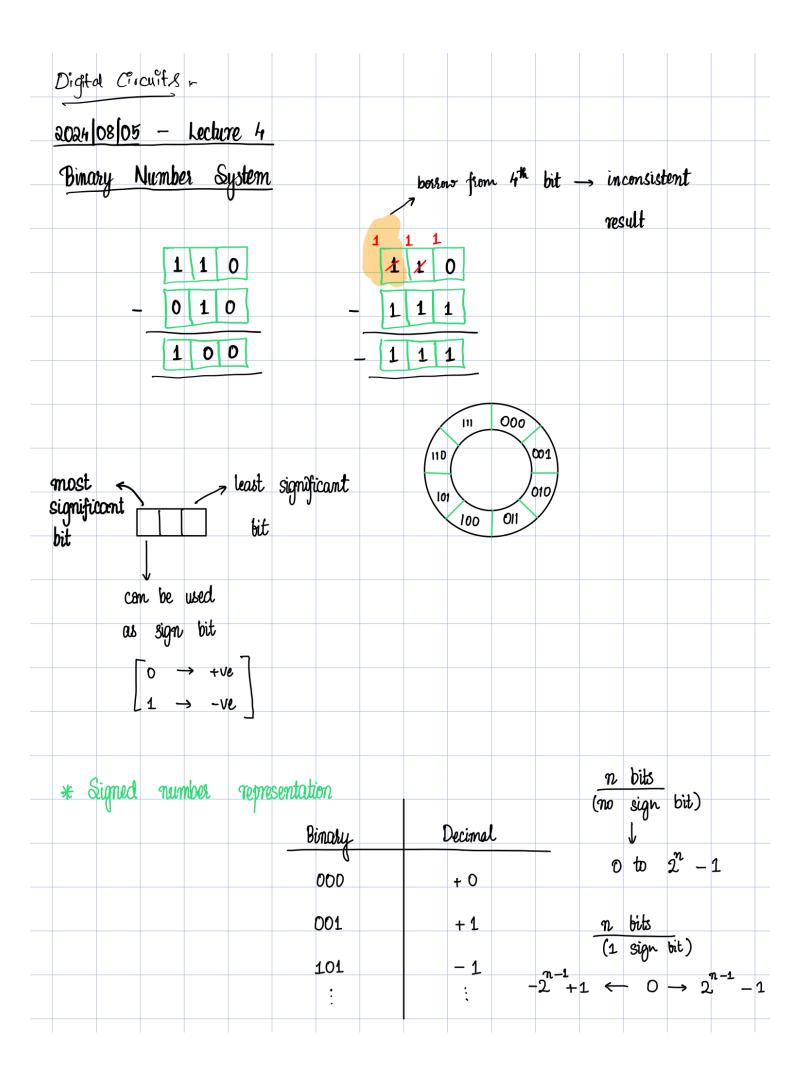
$$(v\ddot{u})$$
 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ [Associativity]

.......

(viii)
$$(A \cdot B) + (A \cdot C) = A \cdot (B + C)$$
, [Distributivity]
 $(A + B) \cdot (A + C) = A + (B \cdot C)$

(ix) A·
$$(A + B)$$
 = A, A + A·B = A
- set theory

$$\begin{bmatrix}
Covering & \text{theorem}
\end{bmatrix}$$
= A·A + A·B
$$= A \cdot 1 + A \cdot B$$
= A (1 + B)
$$= A \cdot 1 = A$$


(X)
$$A \cdot B + A \cdot \overline{B} = A$$
, [Combining]
 $(A + B) \cdot (A + \overline{B}) = A$

(xi)
$$(A \cdot B) + \overline{A} \cdot C + B \cdot C$$

= $B \cdot A + B \cdot C + \overline{A} \cdot C$

(xii)
$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$
 [De' Morgan's Theorem]

See \blacksquare <u>EE1202 – W03</u> for the proof of (xi).

v-/

